
Gambit: An Autonomous Chess-Playing Robotic System

Cynthia Matuszek, Brian Mayton, Roberto Aimi, Marc Peter Deisenroth, Liefeng Bo,
Robert Chu, Mike Kung, Louis LeGrand, Joshua R. Smith, Dieter Fox

Abstract—This paper presents Gambit, a custom, mid-cost 6-
DoF robot manipulator system that can play physical board
games against human opponents in non-idealized environments.
Historically, unconstrained robotic manipulation in board games
has often proven to be more challenging than the underlying
game reasoning, making it an ideal testbed for small-scale
manipulation. The Gambit system includes a low-cost Kinect-
style visual sensor, a custom manipulator, and state-of-the-art
learning algorithms for automatic detection and recognition of
the board and objects on it. As a use-case, we describe playing
chess quickly and accurately with arbitrary, uninstrumented
boards and pieces, demonstrating that Gambit’s engineering and
design represent a new state-of-the-art in fast, robust tabletop
manipulation.

Index Terms—Mechanism Design of Manipulators; Physical
Human Robot Interaction

I. INTRODUCTION AND RELATED WORK

Physical board games are a rich problem domain for human-
robot cooperation research because such games have an in-
termediate and easily adjustable degree of structure. Playing
board games involves perception of the board and game
pieces, perception of the human, reasoning about the game
and game state, and manipulation of the physical pieces while
coordinating with the human opponent. Progress on physical
board game playing systems paves the way for more general
human-robot cooperation systems that assume less structure.
For example, this line of work could lead eventually to a
manipulator capable of helping a chemist as a lab assistant that
cooperatively performs manipulation tasks in an unstructured
laboratory bench-top or “glove box” environment.

This paper introduces Gambit, a robot manipulator system
that is designed to autonomously play board games against
human (or robotic) opponents. In this paper, we focus on the
game of chess, see Fig. 1. A large number of chess playing
automata that have been imagined or constructed in the last
three centuries suggests that robot chess could be interesting
as an entertainment application; instead, we view robot chess
primarily as a testbed problem of adjustable difficulty that can
advance research in perception and manipulation in a noisy,
less constrained real-world environment.

Compared to prior work on robotic systems playing chess
with specifically instrumented chess boards and/or pieces, the

C. Matuszek, M. P. Deisenroth, L. Bo, R. Chu, M. Kung, J. R. Smith, and
D. Fox are with the Dept. of Computer Science & Engineering, University of
Washington, Seattle, WA; B. Mayton is with the MIT Media Lab, Cambridge,
MA; R. Aimi is with Alium Labs LLC; L. LeGrand and D. Fox are with
Intel Labs Seattle, Seattle, WA; J. R. Smith is with the Dept. of Electrical
Engineering, University of Washington, Seattle, WA.

This work was funded in part by an Intel grant, by ONR MURI grants
N00014-07-1-0749 and N00014-09-1-1052, by the NSF under contract IIS-
0812671, and through the Robotics Consortium sponsored by the U.S. Army
Research Laboratory under Cooperative Agreement W911NF-10-2-0016.

Fig. 1. Gambit autonomously plays chess against a child.

Gambit system represents a leap forward in generality, and
naturally suggests several future steps in the direction of
decreasing structure and increasing generality.

Gambit can play with arbitrary chess sets on a variety of
boards, requiring no instrumentation or modeling of pieces.
Gambit monitors the board state continuously and detects
when and what kind of move an opponent has made. Further-
more, Gambit communicates with a human opponent through
a natural spoken-language interface.

We developed a custom robotic arm hardware for the
Gambit system to create an open, flexible platform that sup-
ports future exploration of robot hardware cost scaling—for
example, techniques for shifting performance and cost from
mechanical components to sensors, silicon, and software.

Gambit’s perceptual system tracks the board pose and the
human opponent in real time. The board is not fixed relative
to the robot and is continuously calibrated during game play.
This allows for game play without an explicit indication of
move completion.

The Mechanical Turk, first exhibited in 1770, is perhaps
the first purported chess playing automaton. It was in fact not
autonomous at all, as it relied on a concealed human chess
master for perception, game logic, and control of the Turk’s
manipulation hardware, which consisted of a mechanical arm
and hand, as well as a “voice box” that could say a single
word (“Echec”). The Turk used magnetically instrumented
chess pieces that enabled the operator to sense the game state
via the motion of corresponding magnets in the operator’s
compartment. Thus the mechanical Turk was actually a chess
teleoperation system, not a chess automaton [17], [19].

Nearly all autonomous board game playing systems use
instrumented or special purpose game boards and pieces
to simplify perception and manipulation. Thus, they do not
handle the complexities introduced by using arbitrary pieces,

1

2 3 4 5

6

grip

torso

base

shoulder

wristforearm

upper arm

elbow

Fig. 2. Schematic of the arm degrees of freedom.

boards, and environments. For example, chess playing robot
arms were shown in 2010 at the Maker Faire,1 and at several
press events in Russia [5]. They used instrumented chess sets
such as the Digital Game Technology Sensory Chess Board2

to eliminate the perception problem. A commercial product
called the Novag 2 Chess Computer includes a robot arm
that can play against a person. However, it uses a special
instrumented board for perception and special chess pieces
that are co-designed with the manipulator.3

In the human-robot interaction literature, turn taking has
been studied extensively in several contexts, including social
speech interactions [7], drumming [13], and game play for
autism therapy [9]. Human-robot collaboration and joint ac-
tivity has been discussed in [6], which investigates socially
expressive and natural communication via expressive robots
rather than board game playing and/or co-manipulation.

The paper is organized as follows. In Sec. II, we describe
Gambit’s hardware and sensor design. Sec. III describes our
approach to playing chess in a flexible, robust manner against
human opponents. Sec. IV discusses experimental results.

II. MANIPULATOR AND SENSOR SUITE DESIGN

The Gambit system includes a completely new arm, the
design of which is open source. The decision to create a
new arm design was driven by several factors: First, for
robotic manipulation to have widespread impact, the cost of
manipulation hardware must decrease. The Gambit arm is
moderate in cost (circa $18K in parts) and relatively high in
precision; our hope is to seed a community-wide process of
cost reduction engineering by open-sourcing the design.

Second, to be able to implement smooth, natural, sensor-
driven motions and interactions (such as visual- or E-Field-
servoing [15]), or to implement programmable compliance,
we wanted complete control of the robot, down to low-level
firmware and shortest timescales.

A. Mechanical Design

The Gambit manipulator consists of a 6-DoF arm with a
parallel jaw gripper. The arm’s DoFs are illustrated schemati-
cally in Fig. 2. The three revolute DoFs (1, 2, and 3) provide

1http://www.chessplayingrobot.com
2http://www.digitalgametechnology.com
3http://tiny.cc/novag-2-chess-robot

Fig. 3. Cross sectional view of Gambit forearm with covers removed.

position control, while DoFs 4, 5, and 6 provide orientation
control via a series roll-pitch-roll spherical wrist. The “torso,”
the structure between the base and shoulder, is offset from
the base rotation axis; this torso “lean” reduces the torque
requirements of the shoulder joint. The tabletop working area
is a circle with a radius of ≈ 60 cm.

To construct a 6-DoF robot with reasonable cost, we priori-
tized precision of position over orientation. The three position
DoFs use Harmonic Drive FHA series integrated motors, zero
backlash gearboxes, and 0.0018-degree encoders, driven by
Copley Controls servo amplifiers. These actuators are hollow
and use double needle bearings to support significant cantilever
loads, simplifying joint design and cabling. The wrist uses
three RX-28 Dynamixel actuators with a much lower reso-
lution of 0.29 degrees. The Dynamixels have an integrated
controller, yielding a much smaller overall package.

To achieve a spherical wrist, DoFs 5 and 6 use timing
belts to offset the servo motor from the DoF, as illustrated in
Fig. 3. DoF 6 uses a single hollow miter gear pair to achieve
a 90-degree turn. In order to hold DoF 6 still while rotating
DoF 5, both motors need to rotate. A differential design was
considered but rejected because of limited space for cabling
and slip ring. Slip rings are located on all necessary joints in
order to allow continuous rotation.

Twelve conductors are wired to the gripper, four for a USB
camera centered in the gripper, four for the gripper servo, and
four are reserved for future use. Gambit uses a simple parallel
jaw gripper design with a Dynamixel RX-10 in a double
crank mechanism. The gripper jaws are easily replaceable to
adapt to specialized tasks, and the entire gripper assembly
can be retrofitted if another type of gripper is required. For
picking up chess pieces, we used a hollow gripper jaw design
with a rubber finger tip (normally used to aid people in
collating papers) stretched over the frame, forming a compliant
“opposing trampoline” structure that conforms to objects and
has a slight centering effect.

The structure of the robot is milled from aluminum. The
Copley Controls drivers use the structure as a heat sink,
eliminating the need for a cooling fan.

B. Sensing

In addition to joint encoders, Gambit has a shoulder-
mounted PrimeSense (http://www.primesense.com/)

depth camera (technologically identical to an Xbox Kinect),
and a small camera built into the gripper. The PrimeSense
camera provides three color channels (RGB) plus depth for
each pixel, and has a working range of approximately 0.5m
to 5m. This large minimum range presented a design challenge
for the system. Since our goal was to develop a standalone,
integrated system, we wanted the camera to be mounted on
the arm rather than overhead. We solved this by mounting the
depth camera facing backwards on the torso to increase camera
distance to the workspace. The arm is positioned backwards
with the torso leaning away from the board when perceiving
board state. In normal operation, the torso leans forward which
maximizes the robot’s reach.

The small camera in Gambit’s gripper was originally de-
signed to fit in the bezel of an Apple MacBook. The challenge
in integrating this palm camera was to maintain the integrity
of its high-speed USB data as it passes through all five of
Gambit’s slip rings and the electrically noisy environment
inside the arm. We used a USB hub in the robot’s forearm
to boost the signal after it passed through the two wrist slip
rings, and used shielded cable wherever possible.

C. Driver Software

The driver software for the Gambit arm is arranged hier-
archically, targeting specific hardware at the low levels and
providing broader abstraction at higher levels; thus, the drivers
above the lowest layer are reusable for other robot arms.

As explained in Sec. II-A, Gambit uses two different
kinds of actuators. DoFs 1, 2, and 3 are addressed via
CAN bus. DoFs 4, 5, and 6 use an RS-485 bus. The low
level gambit_driver, which is built on top of ROS [16],
provides a uniform interface to the heterogeneous actuators.

The drivers run on a dedicated Intel Atom net-top PC
equipped with CAN and RS-485 PCI cards. This dedicated
control PC is not subject to variable load conditions that might
interfere with smooth control of the arm. Applications running
on a separate computer command the arm using a higher-
level driver that provides an Arm object, which handles ROS
communication with the lower level drivers.

III. PERCEPTION AND MANIPULATION

In the following, we describe details about the perception
and manipulation required for autonomous chess playing. This
includes real-time tracking of the location and the board state
and detection of an opponent’s move, see Sec. III-A. Sec. III-B
describes how Gambit learns to recognize chess pieces, a first
step toward Gambit joining a chess game at any stage of
the game. In Sec. III-C, we describe the actual process of
playing a game, including details about the manipulation and
the interface Gambit uses to communicate with a human.

A. Perception and Game State Estimation

1) Locating the Chessboard: Locating the chessboard and
continuously updating its posture with respect to the camera
involves: (1), finding the board itself, and (2), finding the trans-
formation of the board with respect to the camera. Ignoring

(a) Board corner points in white. (b) Detection of a hand while
moving a chess piece.

Fig. 4. (a): Finding 2D corner points. (b): Hand detection.

the depth information from the camera (Sec. II-B), we detect
corner points on the 2D (RGB) image of the chess board
to locate the board and the grid of squares, see Fig. 4(a).
Depth information of the corner points is then incorporated.
A plane is fitted to the (now 3D) points using RANSAC [12],
which yields the plane upon which the board surface lies, but
does not uniquely determine the exact board placement. Thus,
we determine the best match of all 3D points on the board
plane with a template of the 8×8 contiguous chessboard cells
to localize the board. This approach is also robust to partial
occlusions of corner points (e.g., by a hand or other pieces).

2) Board Occupancy: To determine if chess squares are
occupied, Gambit uses the point cloud consisting of all points
above the surface of the board plane. An isometric projection
of this point cloud onto the board returns a 2D projection
of all pieces onto the board plane. The projected points are
clustered, and individual clusters—corresponding to pieces—
are assigned to a cell in the 8×8 occupancy grid defining the
chess board. When an object, e.g., a hand, is detected in the
area above the board, see Fig. 4(b), the determination of the
occupancy grid is paused until the object disappears.

Piece color at occupied squares is assigned in two steps:
At the beginning of the game, we define “black” and “white”
by computing the 2-median colors, c, for the point clouds
corresponding to all pieces on either side of the chessboard.
During the game, Gambit determines the best assignment of
the clustered projected point clouds to “black”/“white”. This
procedure returns the current occupancy of the board and the
colors of the occupying pieces at 15Hz.

To track the piece types on the board, we first define the
board state as a tupel (si, ci, pi)t, i = 1, . . . , 64, where
s ∈ {0, 1} is a binary square occupancy variable, c ∈ {white,
black} is the chess piece color, t describes the time step, and
p ∈ {K, Q, P, R, B, N} for King, Queen, Pawn, Rook, Bishop,
and kNight, respectively, defines the piece type. Second, the
board occupancy and color differences of two consecutive
board states are computed. GNU chess uses these differences
to check the validity of the change. If the change is invalid,
the opponent is asked for correction.

B. Chess Piece Detection and Recognition

In the long term, Gambit is supposed to join a chess
game at any stage. Currently, Gambit needs a known initial
configuration to identify the chess pieces. As a necessary step

cropped square image
with some padding

square detector piece detector

(a) From a palm-camera image to a detected chess piece. (b) SVM training set. (c) Principal axes for ro-
tational correction.

(d) Translational correction.

Fig. 5. From a full image to rotational and translational corrections of the end effector illustrated across all considered chess sets. (a): Palm-camera image,
detected square, and detected chess piece. (b): Cropped image around the detected chess piece (enlarged box from (a), but using a different piece type).
Positive (blue, center) and negative SVM training labels (red, image border). (c): the corresponding segmented image used for visual servoing, the center of
the blob and its two principal axes (red ellipse) from which the rotational correction is computed. (d): Global translational correction.

toward our long-term goal, we now present a piece recognition
system that can be used to identify chess pieces.

Our chess-piece detection and recognition system consists
of four hierarchical classifiers: a square detector, a binary
piece/background detector, a binary piece color (white/black)
recognizer, and two piece-type recognizers, each with the six
class labels {B,N,K,P,Q,R}. Fig. 6 details the main steps for
chess-piece recognition during game play given a 640×480
palm-camera image. In the following, we detail the classifiers.

1) Square Detector: The square detector is used to find
chess squares—independent of rotation and scale—in the
640×480 palm-camera image.

To be robust to rotations of the camera, we generate 20
square templates by rotating a 220×220 pixel square. From the
templates, we extract histograms of oriented gradients (HOG)
features [8] and obtain 20 HOG square training templates.
Using the HOG square templates turns out to be more robust
than using Hough transformation, which only returns lines,
but not squares. During testing, we follow a standard sliding
window approach, evaluate a score function for all positions in
an image, and threshold the scores to obtain bounding boxes
for the squares. The left panel in Fig. 5(a) shows an example
of a detected square in the full image.

For robustness to scaling of the squares, due to different
chess boards or different hover heights of the robot arm, an
image scale is chosen at test time to ensure that the square size
in the image corresponds approximately to the size of square
training templates. To find an appropriate scale, we generate an
image pyramid using ten pre-specified scales 0.8×(1.05)i, i =

square detector

piece/background (binary)

color (binary)

image

“black”

“rook”

black type (6-class)white type (6-class)

cropped square image

cropped chess-piece imageif piece

if white if black

Fig. 6. Classifier hierarchy for chess-piece recognition during game play.

1, . . . , 10. We apply the square detector to the image pyramid
and find the best scale. We repeat this procedure 20 times and
choose the overall-most likely scale.

2) Piece/Background Detector: For training the chess-piece
detector, padded cropped images from the square detector
(240×240–300×300 pixels) with chess pieces in their centers
serve as positive examples (see right panel in Fig. 5(a)),
equally-sized background images serve as negative examples.
On this training set, we train a binary linear SVM using
LIBLinear [10], which defines our piece/non-piece detector.
We padded the detected chess squares (marked orange in
Fig. 5(a)) to account for large chess pieces and/or camera tilt.

The training examples are generated automatically using
the square detector described previously: The square detector
typically yields up to three squares in the 640×480 image. We
choose the square closest to the center of the image: Optimally,
the robot arm and the palm camera would be centered exactly
at the target square). The left panel in Fig. 5(a) shows
the detected square closest to the image center. Finally, a
rectangular image window centered at the target square is the
training example for the SVM (see Fig. 5(a), right panel).

3) Color Detector: The chess pieces have two colors
(“black”/“white”). We take the chess-piece bounding box, see
Fig. 5(b), to train a color classifier. For example, in Fig. 5(b),
the blue pixels are training data for “white” chess pieces.

4) Chess Piece Classifier: As illustrated in Fig. 6, for each
color, a chess piece classifier is trained to distinguish the piece
types. The features of the respective chess-piece classifiers
are concatenated SIFT [14] and kernel descriptors [3]. The
features are extracted with 16× 16 image patches over dense
regular grids with spacing of 8 pixels. We use these local
features to compute efficient match kernel (EMK) features [4]
to obtain the final image level feature.

C. Game Playing and Manipulation

We consider playing a non-simplified chess game from a
known initial configuration of the board: Gambit is capable
of making any legal chess move, including castling and piece
capture. Furthermore, Gambit can identify these moves when
made by an opponent. See [1] for videos of examples.

At the beginning of the game, the system builds an initial
occupancy grid, computes and saves models of piece color,
and stores a table of the heights, obtained from the depth

camera, of different piece types. This information is used
through the rest of the game. Once the occupancy grid has
been constructed, the current state of the board is tracked using
depth and color information from the PrimeSense camera.

Playing is thereafter a cycle of perceiving the board state,
checking for problems, deciding on and making a move, and
checking again. Examples of problems that can be detected
include a failure in making a move, an opponent making an
illegal move, or a piece becoming occluded by another piece.
In these cases, Gambit asks for help and game play is paused.

A complete move (from the end of an opponent placing a
piece to the end of Gambit’s subsequent move) averages 22.5
seconds, which is well within human turn-taking time.

1) User Interface: Gambit communicates both the game
state and encountered problems via a natural-language spoken
interface. Every move taken during the game is repeated in
spoken colloquial language. When an error is detected—either
on the robot’s part (e.g., dropping a piece), or on the human’s
part (e.g., making an illegal move)—Gambit verbally requests
human intervention to make it possible to continue.

2) Chess Piece Manipulation: Depending on the move, a
sequence of manipulations is required. For example, when
to capture an opponent’s piece, Gambit first removes the
opponent’s piece from the board and then moves the capturing
piece to the desired location. Picking up a piece requires
moving the end effector above the center of the board square
containing the piece, optionally using visual servoing for local
adjustments, lowering the end effector to a piece-dependent
height, and closing the gripper. Depositing a piece is similar.

3) Visual Servoing for Local End Effector Adjustment: For
asymmetric chess pieces or pieces not centered on a chess
square, standard grasps can fail. To improve grasp success,
Gambit performs visual servoing for local corrections. Visual
servoing is based on images from the palm camera.

As in [11], low-dimensional image features obtained from
the palm-camera image are used to correct both the 2D pose
of the end effector in the hovering plane above the board and
the roll angle of the manipulator. These features—the center
and the orientation of the chess piece—are computed from
the statistics of a binary image, which itself uses color and
edge-based segmentation. Specifically, the local adjustments
are computed with the loop:

1) Obtain a cropped image with a single chess piece from
the square and piece detectors in Sec. III-B (Fig. 5(a),
right panel).

2) To deal with changing lighting conditions, we use online
piece segmentation using color and edge information:
We distinguish between the classes “chess piece” and
“background” using a kernel SVM [18]. Positive training
inputs for the SVM are the pixels in a 32 × 32 square
in the center of the image, negative inputs are the same
number of points along the image border, see Fig. 5(b).
After training, the entire cropped image serves as the test
input. The SVM returns a binary class label per pixel
(Fig. 5(c)).

Fig. 7. Gambit can play using arbitrary chess sets. Shown are yellow and
blue Grandmaster pieces (lower left), reproduction Lewis Chessmen pieces
(lower right), and Magic Ball pieces (back row).

3) Compute the center and the orientation (longest principal
axis) of the segmented chess piece piece (Fig. 5(c)).

4) Compute the global displacement and orientation of the
piece in manipulator coordinates (Fig. 5(d)).

5) Align the end effector with the shorter principal axis
(Fig. 5(c)) and move above the piece center (Fig. 5(d)).

IV. EXPERIMENTAL EVALUATION

The use of the depth camera and the palm camera enables
Gambit to play a natural, uninterrupted game of chess on
essentially arbitrary chess boards and uninstrumented pieces.

In 2010, Gambit participated in the AAAI Small Scale
Manipulation Challenge [2], where it played chess games
against three other robots. The four participating chess robots
were quite different in many respects, including basic me-
chanical architecture, system cost, and software architecture.
In each of its three pairwise matches, Gambit scored higher
than its competition. Gambit also had the highest cumulative
score. The informal feedback on the subjective experience of
playing a game with Gambit has been generally positive, with
examples of people playing multiple games, games played
successfully without the system developers being present, etc.

In the following, we analyze Gambit’s performance on the
chess board and the three different chess sets shown in Fig. 7.

Our experiments were structured in three parts. First, we
analyzed problems encountered with perception, manipulation,
or logic during several complete games of chess encompassing
several hundred turns. Second, we set up specific grasping
experiments to test the improvement due to visual servoing.
Third, we tested the accuracy of piece recognition by setting
up several mid-game boards and attempting to locate occupied
squares and identify pieces.

A. Perception and Manipulation

In order to test the baseline sensing, manipulation, and game
logic, we conducted two complete games with each of the three
chess sets shown in Fig. 7. Games were played both with a
human opponent, and with the robot playing both sides.

For baseline games, we used a standard chess opening setup
with no handicaps. Games averaged 112.3 chess moves. For
each game, we tracked how many interventions were requested
by Gambit, and how many failures occurred (with no request
for intervention). As certain moves are more complex than

others—castling and capturing require multiple manipulation
steps—we actually report on interventions and errors across
all manipulations rather than across all moves. Six games
provided 786 total manipulations. We distinguished between
the following errors:

• Manipulation: Failing to grasp a piece, dropping a piece,
or failure to place a piece legally, see Fig. 8.

• Perception: Failing to find a piece on the board (e.g., due
to occlusion) or failing to detect illegal piece placement,
see Fig. 9.

• Miscellaneous: Gripper collision with pieces, collisions
between pieces during placement, or failure to find an
inverse kinematics solution for some motion, see Fig. 9.

Logic errors (failure to correctly identify an opponent’s move,
illegal moves) are not reported because none occurred.

Autonomous Interventions
Manipulations Successes Requested Failures

786 720 38 28
100% 91.6% 4.8% 3.6%

Fig. 8. Successes, requests for intervention, and failures of manipulation.

Perception Miscellaneous
Interventions Interventions

Requested Failures Requested Failures
9/786 12/786 3/786 7/786
1.1% 1.6% <0.1% 0.9%

Fig. 9. Perceptual/miscellaneous failures and requests for intervention during
786 manipulations. The first row is total occurrences across all six games. The
second row shows the corresponding percentages.

Generally, the results demonstrate the reliability and ro-
bustness of the Gambit system. Most errors encountered were
manipulation errors (Fig. 8), often caused by either a failure
to pick up an off-center piece or illegal placement of a piece
that was picked up awkwardly. Visual servoing can reduce
these errors. Moreover, the Lewis Chessmen are difficult to
grip because of their shape and relatively large for the chess
boards we used and, resulting in a higher percentage of errors.
Improved centering of the gripper over the piece can be
expected to help with these difficulties.

B. Visual Servoing

Because the total manipulation errors are still relatively
low, playing the number of games necessary to demonstrate
improvements from visual servoing would be significantly
time-consuming due additional image-processing overhead.
Thus, servoing was tested with a different experimental setup
designed to concentrate on manipulation cases that are likely to
fail without servoing, e.g., difficult pieces that are deliberately
placed as badly as possible.

From each chess set, we placed pieces in the extreme
corners of a board square—the worst possible placement that
might still be considered legal during a game—with other
pieces on the surrounding squares to serve as visual distractors.
Gambit then attempted to pick up each piece and put it down
again several times, both with and without servoing. After

each grasp, experimenters replaced the piece in the original
position.

Regardless of how a piece was picked up, it was always put
down by moving the gripper to the center of a chess square.
Thus, an off-center grasp resulted in an off-center placement.
Accordingly, experimenters also assigned a score describing
how well-centered a piece was on the square after placement,
as determined by the quality of the grasp. The five-point scale
ranges from 1 (very poor grasp) to 4 (perfect grasp), with
0 assigned for illegal placement or a trial in which grasping
failed. “Down-the-line” errors, where a poor but legal piece
placement causes later grasping errors, are not captured by our
experimental protocol. The results are summarized in Fig. 10.

Num. Trials Successful Grasps Grasp Quality
Servoing 40 31 77.5% 3.1

No Servoing 40 7 17.5% 1.4

Fig. 10. Grasping quality of deliberately poorly-placed pieces with and
without servoing. We report whether the grasp was successful and how well-
centered the piece is in the gripper. Visual servoing provided a substantial
improvement in success and grasp quality.

These results suggest that visual servoing can substantially
reduce the number of grasping and placement failures encoun-
tered while playing games, particularly since this experiment
was designed to reflect a worst-case scenario. However, we
found that visual servoing, particularly piece detection, is
somewhat slowing down the game play and sensitive to
the frequently changing lighting conditions, leading to an
additional source of possible failures.

C. Piece Recognition

We tested piece recognition on the Lewis Chessmen, which
are less stylized and lower contrast than the other chess sets.
We collected supervised training data from games. Identifica-
tion models were trained according to Sec. III-B. We then set
up two chess games in different states of completion, in order
to test how accurately the system could recognize the pieces
that are currently in use in a game: First, the depth camera
was used to determine which chess squares were occupied,
see Sec. III-A. Second, the robot hand moved above occupied
squares to take pictures of each piece from directly above.
Third, these images were used as test images of the piece
recognition procedure detailed in Sec. III-B.

The confusion matrix for our experiments is shown in
Fig. 11. On a test set of 59 images, four piece types were
misclassified, which led to an overall accuracy of 93.22%.

Although the data set is small, the overall results suggest
that close-range object recognition using the camera in the
gripper has real promise in manipulation and interaction tasks.

V. FUTURE WORK

In the chess domain, reliable piece recognition can provide
a principled way of resolving errors, such as perception un-
certainties, e.g., occlusions: The gripper camera could simply
be sent to look at areas of the board where problems were
encountered. More generally, a reasonably high-resolution,

K Q B N R P k q b n r p
K 2
Q 2
B 4 1
N 2
R 4
P 14
k 2
q 2
b 2
n 4 1
r 2
p 1 1 15

Fig. 11. Confusion matrix from recognition of 59 pieces participating in two
chess games. Pieces are labeled using standard FEN notation, e.g., “N” is a
white knight. The color of the chess piece (white/black) was 100% accurately
determined, the recognition accuracy of the piece types was about 93%.

close-up image of the workspace can lead to improved grasp
selection, better motion planning, and ambiguity resolution.
Outside the chess domain, machine learning can offer addi-
tional intelligence in noisy, unfamiliar “real-world” tasks.

Our work can be generalized toward the ultimate goal of
an intelligent manipulation assistant. Playing a wider variety
of games, or even to learning completely new games, is one
interesting direction for future work. Another one is to learn
cooperative tasks that are less structured, e.g., not turn based.
For example, future systems could assist with Lego or other
building activities. Developing the ability to manipulate more
challenging objects, such as playing cards, Monopoly money,
or small game pieces would enlarge the set of cooperative
tasks in which a system such as Gambit can participate.

Comprehensive perception of the human, e.g., monitoring
the human’s facial and hand gestures, would enable improved
human-robot cooperation. This could allow for more natural
interactions, such as taking back moves, or smoothly interleav-
ing other activities with game play. These research questions
have to be addressed to move beyond chess playing to realize
the vision of an intelligent manipulation assistant.

VI. CONCLUSIONS

Robotic game playing is an excellent toy problem for
exploring human-robot collaboration because it has an easily
varied degree of structure. This paper presented Gambit, a
robotic system that is capable of playing chess with a human
opponent in a natural fashion, using a variety of ordinary,
uninstrumented chess sets. For interaction with the human
opponent, Gambit solely uses speech synthesis, its own body
gestures, and perception of the board and the player’s hands.
It does not require any computer display, input devices, or
buttons to play chess with a human opponent. Turn taking
is completely natural, and does not require a “chess timer”
to mark the end of a turn. Compared to prior chess-playing

robots, Gambit operates with less structure: It does not use
an instrumented chess board and can learn to play with a
diverse variety of novel human chess boards/pieces. Gambit
unambiguously beat all of its robotic opponents at the 2010
AAAI Small Scale Manipulation Challenge. Videos and more
details on the Gambit project can be found at [1].

Although chess playing is not the end goal of this research,
the fact that people have been trying to build chess playing
automata for hundreds of years suggests that chess might
be a successful application for a cost-effective small scale
manipulation system. Since Gambit’s design is open source,
we hope that the community will iterate on the design to
reduce its cost even further, and make small scale manipulation
an everyday reality, for chess playing and many other human-
robot collaboration applications.

REFERENCES

[1] http://www.cs.washington.edu/robotics/projects/gambit

[2] M. D. Anderson, S. Chernova, Z. Dodds, A. L. Thomaz, and D. S.
Touretzky, “Report on the AAAI 2010 Robot Exhibits,” AAAI Magazine,
in press, 2010.

[3] L. Bo, X. Ren, and D. Fox, “Kernel descriptors,” in NIPS, 2010.
[4] L. Bo and C. Sminchisescu, “Efficient Match Kernel between Sets of

Features for Visual Recognition,” in NIPS, 2009.
[5] A. Bratersky, “Dvorkovich, Chess Robot Go 1-1,” http://www.

themoscowtimes.com/news/article/dvorkovich-chess-robot-go-1-1/
408089.html, June 2010.

[6] C. Breazeal, A. Brooks, D. Chilongo, J. Gray, G. Hoffman, C. Kidd,
H. Lee, J. Lieberman, and A. Lockerd, “Working Collaboratively with
Humanoid Robots,” in Humanoids, 2004.

[7] C. Breazeal and B. Scassellati, “Infant-like Social Interactions between
a Robot and a Human Caregiver,” Adaptive Behavior, pp. 49–74, 2000.

[8] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human
Detection,” in CVPR, 2005.

[9] K. Dautenhahn and A. Billard, “Games Children with Autism can Play
with Robota, A Humanoid Robotic Doll,” in Cambridge Workshop on
Universal Access and Assistive Technology. Springer, 2002, pp. 179–
190.

[10] R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin, “LIBLINEAR: A
Library for Large Linear Classification,” JMLR, pp. 1871–1874, 2008.

[11] J. T. Feddema and O. Mitchell, “Vision-guided Servoing with Feature-
based Trajectory Generation for Robots,” IEEE Trans. on Robotics and
Automation, pp. 691–700, 1989.

[12] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography,” Comm. of the ACM, pp. 381–395, 1981.

[13] H. Kose-Bagci, K. Dautenhahn, and C. L. Nehaniv, “Emergent Dynamics
of Turn-taking Interaction in Drumming Games with a Humanoid
Robot,” in RO-MAN, 2008.

[14] D. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,”
IJCV, vol. 60, pp. 91–110, 2004.

[15] B. Mayton, L. LeGrand, and J. R. Smith, “An Electric Field Pretouch
System for Grasping and Co-Manipulation,” in ICRA. IEEE, 2010.

[16] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibsz,
E. Berger, R. Wheeler, and A. Ng, “ROS: An Open-source Robot
Operating System,” in Open-source Software Workshop of ICRA, 2009.

[17] S. Schaffer, “Enlightened Automata,” in The Sciences in Enlightened
Europe. University of Chicago Press, 1999.

[18] B. Schölkopf and A. J. Smola, Learning with Kernels—Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press, 2002.

[19] T. Standage, The Turk: The Life and Times of the Famous Eighteenth-
Century Chess-playing Machine. Walker, 2002.

