Robot Power System

Posted 24 Nov 2009

In order to construct Intel Labs Seattle’s mobile robotics platform, MARVIN, I needed to build a power system to supply the DC voltages required by the different components of the system. I used nickel-metal hydride battery packs as the battery power source and VICOR DC-DC converters to provide the various required voltages. The control panel on the rear of the robot is laser-cut acrylic and provides control over battery power, battery chargers, power to individual system components, and battery current and voltage monitoring.

One of the important features of the design is an onboard AC to DC power supply. This allows the robot to run indefinitely from a single tether, which plugs into a standard electrical outlet; no external power supply is needed. The system switches seamlessly between wall and battery power when wall power is connected or disconnected, so no part of the system needs to be shut down to connect or disconnect power. Onboard chargers enable the robot to recharge its batteries while it is plugged in.

picture of the back of a mobile robot showing power meters and switches
MARVIN's rear control panel. The power module controls are at the bottom.

Specifications

inside of the base of the robot, showing DC regulation modules, terminal blocks, and the back side of indicators and switches
Inside the power module while I was constructing it. DC-DC converters and solid state relay are mounted on an aluminum side panel for heatsinking. Fuses, relays for the switching/interlock logic, and screw terminals for easy connection of peripherals are mounted on the bottom plate. Batteries will fill most of the empty space.
Previous post: Classroom Presenter for the XO Laptop
Next post: Weekend Project: The Message Box